Ultrafilters over measurable cardinals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafilters over a Measurable Cardinal

The extensive theory that exists on ~ca, the set of uitrafilters ov-.r the integers, suggests an analogous study of the family of g-complete ultrafih~rs over a measurable cardinal g > w. This paper is devoted to such a study, with emphasis on those aspects which make the uncountable case interesting and distinctive. Section 1 is a preliminary section, recapitulating some knov, n concepts and re...

متن کامل

Ultrafilters and Large Cardinals

This paper is a survey of basic large cardinal notions, and applications of large cardinal ultrafilters in forcing. The main application presented is the consistent failure of the singular cardinals hypothesis. Other applications are mentioned that involve variants of Prikry forcing, over models of choice and models of determinacy. My talk at the Ultramath conference was about ultrafilters and ...

متن کامل

Some constructions of ultrafilters over a measurable cardinal

Some non-normal κ−complete ultrafilters over a measurable κ with special properties are constructed. Questions by A. Kanamori [4] about infinite Rudin-Frolik sequences, discreteness and products are answered.

متن کامل

Nonregular Ultrafilters and Large Cardinals

The relationship between the existence of nonregular ultrafilters and large cardinals in the constructible universe is studied.

متن کامل

Measurable cardinals and category bases

We show that the existence of a non-trivial category base on a set of regular cardinality with each subset being Baire is equiconsistent to the existence of a measurable cardinal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1973

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-77-3-257-269